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Abstract.
Graph convolutional neural networks (GCNs) have shown tremendous promise in address-

ing data-intensive challenges in recent years. In particular, some attempts have been made
to improve predictions of Susceptible-Infected-Recovered (SIR) models by incorporating hu-
man mobility between metapopulations and using graph approaches to estimate corresponding
hyperparameters. Recently, researchers have found that a hybrid GCN-SIR approach outper-
formed existing methodologies when used on the data collected on a precinct level in Japan.
In our work, we extend this approach to data collected from the continental US, adjusting for
the differing mobility patterns and varying policy responses. We also develop the strategy for
real-time continuous estimation of the reproduction number and study the accuracy of model
predictions for the overall population as well as individual states. Strengths and limitations of
the GCN-SIR approach are discussed as a potential candidate for modeling disease dynamics.

1. Introduction.
Compartment models are widely used in the modeling community to describe the spread of

infectious diseases [1]. Standard SIR model considers three compartments: S(t) - the number
of susceptible individuals, I(t) - the number of infected and R(t)-the number of recovered or
deceased at time t. Representing the infection rate parameter by β and removal rate parameter
by γ, the following system of equations is derived [2]:

(1.1)



dS(t)

dt
= −β

S(t)I(t)

P

dI(t)

dt
= β

S(t)I(t)

P
− γI(t)

dR(t)

dt
= γI(t)

where P = S(t) + I(t) +R(t) is the total population that is assumed to remain constant.
There are many modifications of the basic SIR model that have been proposed in the

literature [3]. For example, the SEIR variation of the model includes another compartment
for exposed individuals, while the SIRV variation incorporates a compartment vaccinated
populations. It is also possible to account for individuals who end up succumbing to the
disease and dying, as done in the SIRD variation and others like it. While these models are
very intuitive and mathematically tractable, their predictive properties are highly dependent
on the accuracy of the modeling parameters β, γ, and other parameters for the additional
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compartments . In fact, these basic parameters have been found to vary greatly between
subpopulations for a variety of diseases including COVID-19 [4, 5, 6, 7]. This realization has
motivated several groups to develop so-called “metapopulation SIR” or “SIR-network” models
which tackle this problem by splitting the overall population into a number of subpopulations
and allowing for variable infection and recovery rate parameters across these newly created
“metapopulations”[8, 2]. These parameters may account for the change in mobilities between
different compartments and differences in vaccination policies in different regions, among other
conditions.

The caveat of this approach is the increase in computational complexity, the need to
estimate a larger set of parameters, and work with higher dimensional data. In this work,
we explore the benefits of coupling the metapopulation(network) SIR model with the graph
convolutional neural network (GCN) methodology which has enjoyed significant advances and
popularity in recent years. One advantage of GCN parameter estimation compared to that of
standard convolutional neural nets is its applicability to an arbitrary data structure as long as
it may be represented by a graph. It is also better able to draw on geographical relationships.
Several authors explored the GCN-SIR coupling, see review provided in [3].

Drawing motivation from the work of Cao et al [8], we use GCNs to dynamically fit the
parameters of the metapopulation SIR model using a given time series of data. Similar to [8],
we focus on making predictions on the spread of COVID-19 with the GCN framework given
different “horizons,” and compare these forecasts with the standard SIR model. There are
several distinctions in the approach presented in this work in comparison to the “mepoGNN”
model of [8]. In particular: (1) the mepoGNN model was trained on Japanese precinct data,
and our goal in this study is to model the spread of COVID-19 in the United States; (2)
in applying the original model to US data, we found the need to change several modeling
assumptions including choosing a different form of the mobility parameter; (3) we analyzed
the predictions of the model on specific subpopulations and estimated the overall reproduction
number based on the metapopulation model.

2. Graph Convolutional Neural Networks.
Graph convolutional neural networks (GCNs) are an emerging technique that have shown

promise in several areas. Here, we will be applying them to the prediction of daily infections
of COVID data. Fundamentally, GCNs are very different from traditional neural networks as
they act an expansion and modification of the core premise of how neural networks operate.
Specifically, graph neural networks work to replace the structure of the data on which a tra-
ditional neural networks performs transformations, instead, applying transformations to data
which represents a graph, utilizing relationships within this structure to enhance predictions
and available context.

The traditional neural network, a model inspired by functioning of a biological brain, is a
computational model designed to perform tasks such as classification, regression, and pattern
recognition. It’s structure consists of interconnected nodes, or “neurons,” which are then
organized into layers: an input layer, one or more hidden layers, and an output layer. Each
neuron takes in information from the previous layer and outputs a weighted sum of the inputs
that involves parameters including weights and biases that are constantly learned. This is
followed by the application of an activation function to introduce non-linearity and enable
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Figure 1. Structure of a traditional neural network

the model to learn complex patterns. Activation functions, such as the sigmoid or ReLU
(Rectified Linear Unit), play a critical role in determining the network’s ability to capture
intricate relationships within data. Inputs to the network represent features of the problem
being modeled, while the output corresponds to predictions or classifications. With the recent
developments in computational power, neural networks have flourished, gaining significant
popularity and enabling breakthroughs in many fields. An example of how neural networks
have been used is for image recognition: the input is a picture containing either a cat or a dog
and the model is trained to determine which of the two is depicted in the image. Figure 1 is
a schematic representation of a standard neural network, illustrating the flow of information
and transformations through its layers.

The structure of the neural network that has been described can be enhanced with graph
theory to model disease dynamics of metapopulations through SIR models (1.1). The purpose
of coupling the metapopulation SIR model to a convolutional neural network is to achieve bet-
ter accuracy in estimating hyperparameters by taking into account communication/mobility
of sub-populations between different regions. This is accomplished by the mobility parame-
ters assigned to the edges of a graph. More rigorously, graph neural network models may be
defined as follows. Let G be defined as the graph data such that G = (V, E). Where V is
defined to represent set of nodes comprised of |V | = N nodes. Similarly, we let E be such that
E ⊆ V ×V . Here it will be used to store connection data between the nodes. The features may
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Figure 2. Structure of a GCN

also be represented by the matrix X = {x1,x2, ...,xN}T ∈ RN×D, where the feature vector xi

is associated with node vi. Here, D is used to denote dimension of the feature. By convention,
we define an adjacency matrix for G as A ⊆ RN×N , where Aij = 1 for existing edges and
Aij = 0 otherwise. Figure 2 is an illustration of embedding a graphical representation within
the neural network framework that was described earlier. Specifically, the figure shows that
the convolution is applied on a node-by-node basis, with the appropriate weights and biases.

In this paper we will be focusing on the subset of graph learning focused on node-level
tasks. In other words, the GNN framework will be used to predict properties associated with
individual nodes. As with any other neural network model, it will be necessary to train it using
a subset of nodes with known properties, or the training set. This training set of data will be
denoted as VL. The trained model will then be used to forecast the properties of unknown
nodes from a separate testing set of data. The aforementioned training can be represented by
the minimization of the following loss function:

(2.1) L(fθ(G)) =
∑
vi∈VL

ℓ(fθ(X,A)i; yi)

Where θ is a vector containing the parameters of the model. The function fθ(X,A) is
designated to forecast property values for each node, where yi is defined to represent the true
state of the node vi. The difference between the predicted and true properties (fθ(·, ·)i and
yi respectively) is quantified using a loss function ℓ(·, ·). Examples of loss functions that can
be used include RMSE (Root Mean Square Error), MAE(Mean Absolute Error), smooth L1

loss, and others.
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3. Model description.
Network SIR models for a total of M subpopulations typically have the form [2]:

(3.1)



dSn

dt
= −Sn

M∑
m=1

βmnIm

dIn
dt

= Sn

M∑
m=1

βmnIm − γnIn

dRn

dt
= γnIn

where βmn are the corresponding interaction parameters accounting for the movements be-

tween subpopulations. Cao et al [8] chose the form βmn = βn

(
hmn
Pm

+ hnm
Pn

)
, where hmn

modeled mobility between regions m and n, and Pm, Pn represent the populations of the re-

gions, respectively. We denote the total population of the country by P =

M∑
m=1

Pm. This leads

to the following form of the metapopulation SIR model:

(3.2)



dSn

dt
= −Snβn

M∑
m=1

αmnIm

dIn
dt

= Snβn

M∑
m=1

αmnIm − γnIn

dRn

dt
= γnIn

where αmn = hmn
Pm

+ hnm
Pn

are the interaction coefficients modeling mobility. In their work,

they argued that following form of mobility was best suited for this task: hmn = α PnPm

(distmn)d+ϵ
,

where α, ϵ and d are the training hyperparameters and distmn is the distance between the
regions.

By representing the SIR model via a graph with mobilities αmn assigned to the edges
and keeping γn to represent recovery/immunity rate, a graph convolutional neural network
was trained using the somewhat complex architecture that has been claimed to be the first
hybrid model that couples the metapopulation SIR model with spatiotemporal graph neural
networks. The code shared by the authors has been used as a basis for our investigation,
where we implemented the GCN structure as shown in Figure 3. This architecture consists
of three main sections: the graph learning module, the metapopulation SIR module, and the
spatio-temporal module. For our model we chose to use the adaptive version of the model
proposed by Cao et al, where the mobilities are initialized statically from an estimation based
on population and distance, and then learned. The spatio-temporal module is comprised of
a combination of spatio-temporal (ST) layers. Each layer is created through combining a
graph convolutional neural network layer with a gated temporal convolutional network layer.
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Figure 3. Model architecture used in [8]

The results from the spatio temporal module are then passed through two fully connected
layers with a ReLU (Rectified Linear) activation function and a Sigmoid activation function
respectively, producing the predicted β and γ parameters [9]. These predicted parameters are
fed into the final, metapopulation SIR module (see Figure 3) which is detailed above, which
produces the final daily infection prediction from the model.

4. Extending the model to US data.
In extending the original model to US data, we faced several challenges.
First, there was a lack of an easily accessible source for recovery data. In order to gather

the data necessary it was necessary to take several key steps. We started by sourcing data on
daily infections from a dataset downstream from official data by the Johns Hopkins Center
for Systems Science and Engineering (CSSE). This provided confirmed infection data on a
county level which was binned up to the state level to alleviate computational complexity
concerns. Additionally, the date standard format was reinterpreted as an integer day offset
from the first day found in the dataset. We also made the decision to exclude US territories,
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the District of Columbia, Alaska, and Hawaii from the training and testing of our model as this
would introduce additional complexity into the geospatial relationships without benefitting
the predictions made significantly. Several supplementary datasets were additionally used,
such as data on the physical locations of state centers and US state populations. We were,
however, unsuccessful in obtaining a dataset that could sufficiently detail recovery data in
the United States. This was a challenge as the model necessitated such data as an input,
data which was available in Japan but not for the US. To overcome this issue, we generated
recovery parameter by numerically solving System 3.2 using an Euler approximation from an
ad-hoc γ value and the known real-world infection data which we sourced. We believe that
this solution is effective because while the recovery data is somewhat approximate, the model’s
performance in predicting infections is still compared against the ground truth.

Second, compared to Japan, United States complex interaction between the regions in
the United States is more complex, so we had to account for effect of state-level policies on
mobility estimation

The mobility value approximation has been improved with an additional term in the
formula to account for flight travel:

(4.1) hmn = α
PnPm

(distmn)d + ϵ
+ βmax(Pn, Pm)(1− δmn)

Namely, the last term allows to have significant mobility between densely populated states
even if the distance between them is large. Multiplying by the Kronecker delta function makes
sure this term collapses to zero in the simple SIR model case when M = 1.

The following consistency analysis has been carried out. As a result of the model architec-
ture, the mobility values are not normalized and so it is necessary to balance them out using
the following:

Lemma 4.1. Metapopulation model (3.2) is consistent with the standard SIR model if and
only if 2αP 2 = ϵ.

Proof. Taking the limiting case of M = 1 subpopulation and denoting hmn = hnm = h,

βn = β,∀n = 1, . . . ,M , we obtain αnn =
2h

P
, where P = Pn = Pm for all n,m. It is clear

that since hmn = α
PnPm

(distmn)d + ϵ
, h = α

P 2

ϵ
, so αnn =

2αP

ϵ
. Hence Snβn

∑M
m=1 αmnIm =

β
2αP

ϵ
SnIm which is equal to βSI/P under the condition that 2αP 2 = ϵ

This allows to reduce the number of free parameters to α and d, simplifying the training of
the mobility parameters. Optimized values of these parameters were chosen as follows:

α : 1.12× 10−6

d : 1.73 (distance decay factor)

Parameter ϵ was fixed in accordance with Lemma 4.1. The optimized GCN hyperparam-
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eter values and training details are provided below:

Learning Rate : 2.5× 10−5

Optimizer : Adam
Loss Function : MAE (Mean Absolute Error)
Epochs : 319

It must be noted that some run-to-run variance is expected in this model due to the random
nature of weight initialization in the GCN training. Additionally, hardware differences may
also slightly change results as using the GPU, CPU, or a dedicated accelerator will lead to
having minor differences in the driver and PyTorch backend implementations.

5. Real-time tracking of the reproduction number.
One of the critical considerations that is important to keep in mind when modeling

COVID-19, as well as other infectious diseases, is the ability of the model to predict its spread.
The threshold parameter R0, such that the disease free equilibrium (DFE) is asymptotically
stable for R0 < 1 and unstable otherwise, is called the basic reproduction number. A more
granular parameter accounting for the changes in population susceptibility, is the so-called
effective reproduction number, denoted as Rt = R0

St
N . Both measures are important tools for

the mathematical validation of epidemiological models, as well as for practical considerations.
Challenges and misconceptions in estimating these metrics are well documented [10, 11].

Local parameters of the evolving epidemic change based on mobility patterns, popula-
tion density and policy measures, the complexity of which creates significant difficulties for
decision-making. The need for accurate continuous real-time prediction of the reproduction
numbers in light of this variability has long been recognized and documented in the literature
[12]. Some of the proposed real-time estimation methods include the adaptive SIR method-
olgy (ASIR, [12]), where R0 is based on a sliding time window approach, and the introduction
of an “effective contact rate” to capture incidence dynamics over a given network [13]. We
argue that the graph neural network approach chosen in this work has a natural capability
to capture the evolution of modeling parameters in real-time, and hence it may provide an
opportunity to improve upon prior R0 predictions.

As noted in [14], there is a natural connection between R0 and Rt when it comes to study-
ing SIR population models. Namely, as we look at the equation for the infected population in
the standard SIR model,

dI

dt
= βS

I

N
− γI = γI(

β

γ

S

N
− 1) = γ(R0

S

N
− 1)I = γ(Rt − 1)I.

The role of the bifurcation parameter Rt is clear. It separates stable behavior of the disease-
free equilibrium I∗ = 0, for which dI

dt < 1 (for Rt < 1) from the unstable and possibly endemic
equilibrium when Rt > 1.

For the metapopulation SIR model considered in this paper, we can take a similar ap-
proach, following the framework described in [15]. Namely,

Theorem 5.1. Basic reproduction number for model 3.2 is given by R0 = ρ(DA), where
A = {Anm} = {αnm} is the mobility matrix and D = diag(β1

γ1
, . . . , βm

γm
) is the scaling matrix.
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Proof. It is easy to see that the Jacobian of this model, linearized around the Disease
Free Equilbrium (DFE) x∗, can be represented as DF (x∗) = F − V , where Fnm = βnPnαnm

and V = diag(γ1, . . . , γm). Here, “F − V ” refers to the next generation matrix, where “F”
represents the inflow and “V ” represents the outflow, and the basic reproduction number is
calculated as the maximum eigenvalue of the matrix “FV −1”. We used the fact that the DFE
is represented by I∗n = 0, S∗

n = Pn for this model. As shown in [15], the DFE is stable when
ρ(FV −1) < 1 under certain conditions on F and V that can be shown to hold in this case.
Henceforth we arrive at the conclusion that for this model:

(5.1)

R0 = ρ(DA), where

A = {Anm} = {αnm} is the mobility matrix,

D = diag(P1β1

γ1
, . . . , Pmβm

γm
) is the scaling matrix

which proves the result of this theorem.

From Lemma 4.1, we know that in the limiting case of M = 1 we have to satisfy

αnn =
2αP

ϵ
=

1

P
,

so since D = P
β

γ
the reproduction number of the metapopulation model R0 in this case

converts to the well known result R0 =
β

γ
.

This result provides a method for continuous evaluation of R0 based on the evolving set
of infection parameters estimated by the neural network. As the neural net learns and adjusts
the underlying mobility and recovery rates, we can use this estimation to recover real-time
reproduction number.

6. Numerical results.
Results of our numerical experiments produced by applying the modified mepoGNN model

to US data are presented next. In particular, US state center-center distances and state
population data was obtained from Kaggle [16]. Confirmed US COVID-19 cases were collected
from the Github repository maintained by The Center for Systems Science and Engineering
at Johns Hopkins University [17].

Figure 4 shows predictions from the trained model based on a 1-day (left) and 7-day
(right) horizon, respectively. The GCN-SIR model is juxtaposed with the standard SIR model
trained on the same dataset. It can be seen that by taking into account variability between
regions, the model improves upon the prediction provided by traditional SIR approaches. In
addition, it takes advantage of the neural network’s learning capabilities to effectively train
model parameters.

In Figure 5 we look at the accuracy of the model predictions per state, choosing Virginia,
New York, California, Ohio, Rhode Island and North Dakota as a sample containing large and
small subpopulations. What we see is a strong model prediction for the densely populated
states (New York, Virginia, California, Ohio) and a poor prediction for the less populous
states (North Dakota, Rhode Island).
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Figure 4. Metapopulation model prediction for US data based on real COVID-19 data, compared against
the standard SIR model. Left panel: SIR-GCN Predictions on US COVID-19 data, 1 day horizon; Right Panel:
SIR-GCN Predictions on US COVID-19 data, 7 day horizon

To test this hypothesis, we plotted the correlation between the R2 measure of fit and the
corresponding state size in Figure 6. To account for the large variation in state populations,
the populations are log-scaled. The graph clearly shows moderate correlation, confirming that
large-size subpopulations enjoy a more accurate prediction by the GCN-SIR model, which is
to be expected given that the size plays a critical part in the optimization algorithm used
in training the GCN. It is also clear that a majority of the state-level predictions have an
R2 > 0.6, which indicates reasonable performance overall.

Next, we performed numerical experiments to continuously estimate the reproduction
number (R0) of the entire metapopulation model using the estimate derived earlier in (5.1).
The numerical results of this estimation, compared to the standard SIR reproduction number
calculation, are given in Figure 7. We can see the evolution of the R0 value over the course of
the pandemic, roughly capturing the ups and downs of the infection represented in Figure 4.
The higher frequency oscillations visible in the graphs are due to the day-by-day variations in
the neural net predictions and the real-world fact that people tend to travel more on certain
days of the week than others. It must be noted that while the overall R0 values obtained by
this approach were comparable to those available in the literature, state-level predictions were
far less accurate. It indicates that a more granular county-based approach might be necessary
to resolve state-level estimations.
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Figure 5. Metapopulation model predictions for six US states.

7. Discussion and future work.
In this work we successfully adapted the hybrid GCN-SIR metapopulation model to predict the
evolution of COVID-19 in the 48 continental states of the United States of America. In order
to do so, we changed the formulations of the mobility parameters and derived the reproduction
number formulation compatible with the standard SIR model. This allowed to streamline the
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Figure 6. Correlation between the accuracy of fit for the metatpopulation SIR model and the size of the
state for 48 contiguous Unites states.

Figure 7. R0 number estimation using the GCN-SIR model.

process for training the hyperparameters to obtain a more robust implementation.
Upon implementing these changes, we were able to obtain a high accuracy predictions for

both 7-day and 1-day horizons for the entire United States. We noticed that individual state
prediction accuracy was correlated with the state population, with densely populated states
enjoying a better fit.

Based on the neural network based approach to learn the infection rates in real time, we
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developed an alternative to the adaptive SIR method for estimating the reproduction num-
bers. Applying this approach to the entire US population, a reasonable prediction has been
obtained, giving reason to believe that further improvements may yield an even better predic-
tive capability that would be of significant interest to policy makers and medical practitioners.

Overall, based on the results presented in this work, GCN-SIR metapopulation model
seems to have a high potential for predicting improving predictions of the spread of infectious
diseases based on sufficient amount of training data. To our knowledge, this is the first
application of this type of a GCN-SIR coupling to real COVID-19 data collected within the
USA.

While these preliminary results are encouraging, we believe that additional work needs to
be performed to validate the model on other types of data. High correlation of the R2 fitting
parameter with the size of the subpopulations indicates that further improvements may be
made to the choice of the mobility formulation, including learning mobility matrices in real
time. Additional work could include building a better mobility estimation based on a more
granular county-level data. All of our current attempts at a more granular model so far have
run into issues with handling the sheer size of the model.

Future work will include deriving more accurate state-level reproduction number estima-
tion and improvement of parameter estimation procedures. The possibility of additionally
including the effect of local policy changes into the model is also one that we will consider in
the future.
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